Exercise 39

Determine the distance from the plane $12 x+13 y+5 z+2=0$ to the point $(1,1,-5)$.

Solution

The normal vector to the plane \mathbf{n} is obtained from the coefficients of x, y, and $z: \mathbf{n}=(12,13,5)$. An equation for the line with direction vector $(12,13,5)$ that passes through $(1,1,-5)$ is

$$
\begin{aligned}
\mathbf{y}(t) & =(12,13,5) t+(1,1,-5) \\
& =(12 t, 13 t, 5 t)+(1,1,-5) \\
& =(12 t+1,13 t+1,5 t-5) .
\end{aligned}
$$

Substitute $x=12 t+1, y=13 t+1$, and $z=5 t-5$ into the equation for the plane and solve for t to find when the line intersects the plane.

$$
12(12 t+1)+13(13 t+1)+5(5 t-5)+2=0 \quad \rightarrow \quad t=-\frac{1}{169}
$$

The point at which the line intersects the plane is then

$$
\mathbf{y}\left(-\frac{1}{169}\right)=\left(12 \frac{-1}{169}+1,13 \frac{-1}{169}+1,5 \frac{-1}{169}-5\right)=\left(\frac{157}{169}, \frac{12}{13},-\frac{850}{169}\right) .
$$

Therefore, the perpendicular distance from $(1,1,-5)$ to the plane is

$$
d=\sqrt{\left(1-\frac{157}{169}\right)^{2}+\left(1-\frac{12}{13}\right)^{2}+\left(-5+\frac{850}{169}\right)^{2}}=\frac{\sqrt{2}}{13} .
$$

